8 research outputs found

    BIAS AND VARIABILITY IN IMAGE-BASED VOLUMETRIC YTTRIUM-90 DOSIMETRY

    Get PDF
    90Y-microsphere therapy has been widely accepted as a treatment option for both primary and metastatic liver tumors where the patients are ineligible for surgical resection and external beam radiation therapy. The prognosis of untreated patient having liver cancer is very poor with life expectancy less than a year at advance stage. Hence the ability to predict treatment efficacy right after the treatment from post-therapy imaging will help personalize treatment strategies and achieve better outcome. Such prediction can be modeled from correlation of dose and tumor response metrics. It has been shown that local dose deposition method can generate dose map from 90Y emission images with accuracy comparable to dose-point kernel and Monte Carlo simulation methods. The bias and variability of the input images remain to be the weakest link in volumetric dosimetry. The objectives of this dissertation project were to improve image-based volumetric 90Y dose quantification using current commercially available systems and to determine its limitation (bias/variability). We have developed a practical image reconstruction method for 90Y bremsstrahlung SPECT/CT (bSPECT/CT) images with CT attenuation correction and energy-window based background compensation. Although the volumetric quantitative accuracy of our bSPECT/CT images is limited by partial volume effect, the images can be used to accurately quantify the total 90Y activity delivered to the patient, which allow gross treatment delivery verification and limited outcome prediction. We have also characterized the accuracy and variability of volumetric 90Y dosimetry calculated from count-limited 90Y-PET/CT images. Knowledge of overall errors (systematic and random) in volumetric 90Y dosimetry is important to derive statistically significant dose-response model, which in turn allowing prediction of treatment outcome and personalization of treatment strategy

    SPECT deadtime count loss correction using monitor source method

    Get PDF
    Purpose: Deadtime-count-loss (DTloss) correction using monitor source (MS) requires: 1) uniform fractional DTloss across FOV, 2) high statistics MS images both with & without the object. The aims are validating condition 1 and developing a practical protocol that satisfies conditions 2 with minimal additional study duration.Methods and Materials: SPECT images of non-uniform phantoms (4GBq 99mTc) along with MS (20MBq 99mTc) attached to each detector were acquired multiple times over 48 hours in photopeak and scatter energy window (EW) using Siemens-SymbiaS and GE-D670. Planar images of the MS alone were acquired. Photopeak counts for the MS ROIs were > 100kcts. Fractional DTloss uniformity across the FOV was evaluated by correlating count rates in different ROIs on projection images at different DTloss levels. The correction factor for each SPECT projection at every time point was calculated as the ratio of time-corrected MS count rates with & without the phantom.The DTloss-corrected projections for each SPECT acquisition were decay corrected to one time point. The correction accuracy was assessed against DTloss estimated by paralyzable model. The accuracy of projection-based DTloss correction for SPECT was evaluated. A method to model projection DTloss based on a subset of measured projection DTloss was investigated. The relation of DTloss between photopeak and scatter EW was explored.Results: The fractional DTloss was uniform across the FOV (r > 0.99), validating condition 1. The MS method was accurate to > 99% for planar and SPECT. Measured DTloss from 3-to-5 projections/detector may be used to estimate DTloss with accuracy > 98% for all SPECT projections by modeling DTloss with measured projection rate. The correction factor in photopeak and scatter EW are equivalent with > 99% agreement.Conclusion: MS method can accurately correct planar and SPECT DTloss. Sparse sampling of the projection DTloss allows acquiring MS counts with high statistics with minimal additional study duration making it clinically practical.--------------------------------------Cite this article as: Siman W, Kappadath SC. SPECT deadtime count loss correction using monitor source method. Int J Cancer Ther Oncol 2014; 2(2):020234. DOI: 10.14319/ijcto.0202.3

    Dose volume histogram‐based optimization of image reconstruction parameters for quantitative 90Y‐PET imaging

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147185/1/mp13269.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147185/2/mp13269_am.pd

    90Y PET/CT quantitative accuracy and image quality

    Get PDF
    Purpose: To optimize 90Y-PET/CT image reconstruction for quantitative accuracy and optimal image quality.Methods: PET/CT scans of a NEMA IEC phantom (3GBq 90YCl2, sphere uptake ratio of ~7) were acquired on 4 GE (BGO:DSTE, DST & LYSO:DRX, D690) and 1 Siemens (LSO:mCT) scanners in 3D list mode with 30 min/bed; replayed to 20, 15, 10 min/bed. Iterative reconstruction parameters explored were SUB × IT (3 – 80) and post-reconstruction filters: transaxial: 5 – 25 mm cutoff & z-axis (GE only): std vs. heavy. The effects of PSF modeling and TOF correction were evaluated for D690 and mCT. VOIs were drawn inside spheres and in adjacent background regions. The accuracy of sphere activity concentration (AC in kBq/mL) and contrast to noise ratio (CNR) was calculated as function of SUB × IT. Reconstructed PET images were also evaluated qualitatively for sphere detectability and artifacts.Results: AC converged to 70 – 90% accuracy for 37 mm sphere and further degraded for smaller spheres. Spheres at max CNR might not reach AC convergence yet. Smaller spheres have slower convergence but reach CNR max together with other spheres. Scan duration did not strongly affect sphere convergence but shorter scans increased noise and reduced detectability; 13 mm spheres were not visible going from 30 to 15 min/bed. Heavy z-axis (GE) and transaxial filter with 10 – 15 mm cutoff helped suppress noise and increase sphere detectability at the expense of accuracy. Images with PSF+TOF corrections had higher sphere detectability and converged faster. Hot cluster artifacts 5 – 7 times the background were seen in some cases with SUB × IT near convergence and lower filtration.Conclusion: Accurate 90Y AC was not achieved even at convergence and noise is a major concern. 90YPET/CT reconstruction parameters are different than those for 18F and benefit substantially from PSF+TOF corrections. Optimum image quality and accurate AC may not be simultaneously achievable.----------------------------------------Cite this article as: Siman W, Mawlawi O, Kappadath SC. 90Y PET/CT quantitative accuracy and image quality. Int J Cancer Ther Oncol 2014; 2(2):020235. DOI: 10.14319/ijcto.0202.3

    SPECT deadtime count loss correction using monitor source method

    No full text
    Purpose: Deadtime-count-loss (DTloss) correction using monitor source (MS) requires: 1) uniform fractional DTloss across FOV, 2) high statistics MS images both with &amp; without the object. The aims are validating condition 1 and developing a practical protocol that satisfies conditions 2 with minimal additional study duration.Methods and Materials: SPECT images of non-uniform phantoms (4GBq 99mTc) along with MS (20MBq 99mTc) attached to each detector were acquired multiple times over 48 hours in photopeak and scatter energy window (EW) using Siemens-SymbiaS and GE-D670. Planar images of the MS alone were acquired. Photopeak counts for the MS ROIs were &gt; 100kcts. Fractional DTloss uniformity across the FOV was evaluated by correlating count rates in different ROIs on projection images at different DTloss levels. The correction factor for each SPECT projection at every time point was calculated as the ratio of time-corrected MS count rates with &amp; without the phantom.The DTloss-corrected projections for each SPECT acquisition were decay corrected to one time point. The correction accuracy was assessed against DTloss estimated by paralyzable model. The accuracy of projection-based DTloss correction for SPECT was evaluated. A method to model projection DTloss based on a subset of measured projection DTloss was investigated. The relation of DTloss between photopeak and scatter EW was explored.Results: The fractional DTloss was uniform across the FOV (r &gt; 0.99), validating condition 1. The MS method was accurate to &gt; 99% for planar and SPECT. Measured DTloss from 3-to-5 projections/detector may be used to estimate DTloss with accuracy &gt; 98% for all SPECT projections by modeling DTloss with measured projection rate. The correction factor in photopeak and scatter EW are equivalent with &gt; 99% agreement.Conclusion: MS method can accurately correct planar and SPECT DTloss. Sparse sampling of the projection DTloss allows acquiring MS counts with high statistics with minimal additional study duration making it clinically practical.--------------------------------------Cite this article as: Siman W, Kappadath SC. SPECT deadtime count loss correction using monitor source method. Int J Cancer Ther Oncol 2014; 2(2):020234. DOI: 10.14319/ijcto.0202.34</p

    90Y PET/CT quantitative accuracy and image quality

    No full text
    Purpose: To optimize 90Y-PET/CT image reconstruction for quantitative accuracy and optimal image quality.Methods: PET/CT scans of a NEMA IEC phantom (3GBq 90YCl2, sphere uptake ratio of ~7) were acquired on 4 GE (BGO:DSTE, DST &amp; LYSO:DRX, D690) and 1 Siemens (LSO:mCT) scanners in 3D list mode with 30 min/bed; replayed to 20, 15, 10 min/bed. Iterative reconstruction parameters explored were SUB × IT (3 – 80) and post-reconstruction filters: transaxial: 5 – 25 mm cutoff &amp; z-axis (GE only): std vs. heavy. The effects of PSF modeling and TOF correction were evaluated for D690 and mCT. VOIs were drawn inside spheres and in adjacent background regions. The accuracy of sphere activity concentration (AC in kBq/mL) and contrast to noise ratio (CNR) was calculated as function of SUB × IT. Reconstructed PET images were also evaluated qualitatively for sphere detectability and artifacts.Results: AC converged to 70 – 90% accuracy for 37 mm sphere and further degraded for smaller spheres. Spheres at max CNR might not reach AC convergence yet. Smaller spheres have slower convergence but reach CNR max together with other spheres. Scan duration did not strongly affect sphere convergence but shorter scans increased noise and reduced detectability; 13 mm spheres were not visible going from 30 to 15 min/bed. Heavy z-axis (GE) and transaxial filter with 10 – 15 mm cutoff helped suppress noise and increase sphere detectability at the expense of accuracy. Images with PSF+TOF corrections had higher sphere detectability and converged faster. Hot cluster artifacts 5 – 7 times the background were seen in some cases with SUB × IT near convergence and lower filtration.Conclusion: Accurate 90Y AC was not achieved even at convergence and noise is a major concern. 90YPET/CT reconstruction parameters are different than those for 18F and benefit substantially from PSF+TOF corrections. Optimum image quality and accurate AC may not be simultaneously achievable.----------------------------------------Cite this article as: Siman W, Mawlawi O, Kappadath SC. 90Y PET/CT quantitative accuracy and image quality. Int J Cancer Ther Oncol 2014; 2(2):020235. DOI: 10.14319/ijcto.0202.35</p

    A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study

    No full text
    corecore